

SACRIFICIAL ANODES ANCHORS & ANCHOR CHAINS VESSEL DECK EQUIPMENT

KATRADIS GROUP OF COMPANIES

80 years strong relationships!

Katradis Group of Companies has a long and distinguished history which goes back to the first half of the twentieth century. The company was established in 1936 by Konstantinos Katradis, operating back then as a ship supplier specializing in high quality mooring ropes.

Currently in the hands of a third generation member of the Katradis family, the company has since then become a pioneer in the field of manufacture of mooring ropes and anodes for sacrificial protection, serving the marine industry as well as the sectors of offshore, aquaculture, fishing and yachting.

Over the years we have developed extensive expertise in the design and development of synthetic mooring ropes, which are our mainline products. Our rope factory in Greece, whose site covers an area of 30000m², is one of the most technologically advanced factories in Europe, manufacturing top quality ropes such as Double braided, Sirius UHMWPE (ULTRA High Molecular Polythylene), Kevlar (aramid), LCP (Liquid Crystal Polymer) and others.

We also supply a wide range of steel wireropes for shipping, fishing and industrial purposes. Our steel wireropes comply with the requirements set by ABS, API (American Petroleum Institute), GL and Lloyd's Register.

Responding to a more recent customer demand our company has gone on to manufacture zinc and aluminum anodes such as Hull anodes, Tank anodes, Pit guard anodes, all of which are made in our highly specialized factory.

Furthermore, the Katradis group boasts a large stock of deck equipment such as anchors, stud link anchor chain cables, container fittings, alloy steel chain slings, lifting slings and lashing webbings as well as port development equipment such as fenders, buoys, floating marinas, bollards and oil booms.

ANODES

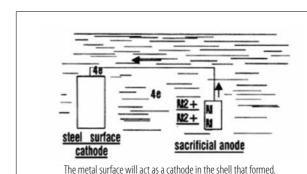
What an anode does for your vessel:

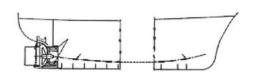
- it protects and extends the lifetime of every metallic object in contact with it, when in a sea environment
- it works where there is no paint or bad quality paint on a metallic surface
- it works where there is corrosion under the paint layer
- it saves money from corroded parts and frequent repairs

Principle of cathodic protection

Corrosion is the spontaneous chemical reaction of a metal against its surroundings. Particularly, in sea water this chemical reaction proceeds by an electrochemical mechanism involving oxidation of the metal, which results in metal loss. That happens when we have a plate with pitting appearance, at the spots where the coating is not good enough to protect.

The part of the metal surface in the electrochemical mechanism (electron release) is called anodic. On the other part of the metal surface where the electron consumption takes place is called cathodic.


If we can supply electrons from an external source, then the electron consumption (cathodic) will speed up and the electron release (anodic) reaction will slow down. As a consequence, the rate of iron dissolution will slow down and the electrode potential will decrease. From the procedure above, the Principle of cathodic protection can be derived from supplying electrons into the metal from an external source, so we can slow down its dissolution.


Applications of anodic protection

The delivery of the electrons to the metal surface to be protected can be achieved in two ways. Firstly, by using an impressed current technique and secondly by using sacrificial anodes.

The impressed current method

By this method the electrical current is delivered to the metal surface from a D.C. power source through an auxiliary anode i.e. the current is forced in or impressed.

Typical galvanic anode for cathodic protection of a ship's hull (anodes alongside the hull are normally mounted alternately on both sides of dilqe keels

The sacrificial anode method

By this method a galvanic cell is formed between the structure to be protected and the sacrificial anode. The electrons pass spontaneously from the anode to the metal surface (cathode). Thus, the source of the electrons (the sacrificial anodes) must have a more negative electrode potential than the metal surface. Metals and conducting materials commonly used are listed below in such order that each normally act as anode with respect to all the materials which follow it.

MAGNESIUM, ZINC, ALUMINUM, IRON AND STEEL, LEAD, BRASS, COPPER, GRAPHITE, COKE E.T.A.

This explains why magnesium, aluminum and zinc alloys are used to protect steel today.

CALCULATIONS

External Protection

The number of anodes for the protection of the hull is calculated based on the following criteria:

A. CURRENT REQUIREMENTS

The wetted surface of the hull times protective current density.

Current (Amp) =
$$\frac{\text{Protected area (m2) x current density (mA/m2)}}{1000}$$

A. SYSTEM DESIGN FILE

The total weight of anode material required is:

Weight (kg) =
$$\frac{\text{Current (Amps) x design life (years) x 8766}}{\text{Capacity of material (Amph/kg) x 0,9}}$$

As a result the number of anodes selected must at least satisfy both the total current and total weight requirements as follows:

ANODE LOCATION

The calculated anodes must be installed in equal distances around the hull, about 6 meters apart. The 15% - 20% of the total calculated QTY must be installed to the stern and rudder area of the vessel. The anodes should not be mounted in the zone close to the propeller's edges.

INTERNAL CATHODIC PROTECTION

The cathodic protection of the ship's tanks is effected with sacrificial anode system. Of course, this type of protection can be applied only to water ballast or cargo/ballast tanks. Zinc aluminum or magnesium anodes may be used but for the installation precautions must be taken for avoiding hydrogen evolution (in the case of magnesium) and sparking (in the case of aluminum). The final selection of the alloy to be used will also depend on the ballast water (seawater), the compatibility of the alloy with any cargo, which might be carried in the tank, the size of the protected tank and the type of the vessel.

Current density required for protection

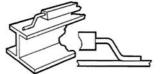
In case, the tank surface is being painted, the anodes will be installed to suppress corrosion on any area with paint defects. The current density of 5mAmp/m2 is normally adequate. In case, of non-coated surface the following current densities are recommended:


FORE AND AFT PEAK TANK 108mAp/m^2 TOP SIDE TANKS 120mAp/m^2 DOUBLE BOTTOM TANKS 86mAp/m² CARGO/CLEAN BALLAST TANK 86mAp/m² LOWER WING TANKS 90mAp/m²

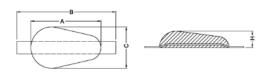
The system life should be at least four (4) years. The above-recommended current densities are applicable to ships for which the normal ballast trip is longer than approx. 5 days. In case the trip is shorter than 5 days, then the above densities should be increased by 20%.

Methods for Hull and Tank Anodes installations

Tank application.

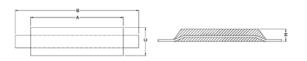

External Hull Applications

CLAMP TYPE for pitting prevention. Tank bottom application.

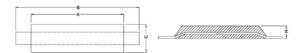

THE RECIPIES FOR ZINC AND ALUMINUM ANODES

Specification Code	US MIL SPEC A18001J
Cu	0.005 max
Al	0.10 - 0.50
Fe	0.005 max
Cd	0.025 - 0.07
Pb	0.006 max
Zn	REMAINDER
POTENTIAL Ag / AgCl (mV)	-1050
ELECTROMECHANICAL CAPACITY (Amp. Hours / kg)	780

Specification Code	
Fe	0.15 max
Si	0.05 - 0.20
Zn	3.50 - 5.00
Ti	0.01 - 0.05
ln	0.02 - 0.05
Mn	0.15 - 0.50
Cu	0,01 max
Al	REMAINDER
POTENTIAL Ag / AgCl (mV)	-1100
ELECTROMECHANICAL CAPACITY (Amp. Hours / kg)	2700


HULL ANODES

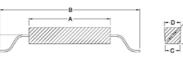
ZINK HULL ANODES


ANODE		DIMENSIC	ONS (mm)	WEIGH	INSERT		
TYPE	A	В	C	Н	NET	GROSS	(mm)
N30ZH	170	240	100	40	2.7	3.0	30 x 3
N75ZH	300	400	160	35	7.0	7.5	40 x 6
N95ZH	300	400	160	45	8.6	9.5	50 x 6

ANODE		DIMENSIC	ONS (mm)		WEIGH	łT (kg)	INSERT
TYPE	A	В	C	Н	NET	GROSS	(mm)
N55ZH	300	400	90	40	5.0	5.5	40 x 6
N125ZH	465	565	110	40	12.0	12.5	40 x 6
N165ZH	520	620	120	40	15.3	16.5	50 x 6
N230ZH	680	780	128	40	21.5	23.0	50 x 6

ALUMINIUM HULL ANODES

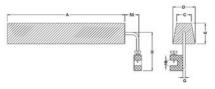
ANODE TYPE		DIMENSIO	NS (mm)		WEIGH	HT (kg)	INSERT
ITTE	А	В	C	Н	NET	GROSS	(mm)
N30AH	300	400	90	40	2.3	3.0	40 x 6
N55AH	460	560	110	40	4.6	5.5	50 x 6
N80AH	520	620	120	40	7.0	8.0	50 x 6
N105AH	680	780	128	40	9.3	10.5	50 x 6
N125AH	800	900	120	40	11.0	12.5	50 x 6
N155AH	1000	1100	120	45	13.5	15.5	50 x 6

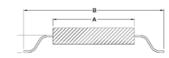


All weights and dimensions are subject to normal variations in material densities.

A range of standard zinc or aluminium anodes is illustrated above, alternative configurations may be cast to requirements.

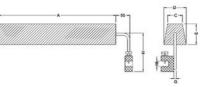
TANK ANODES


ZINC TANK ANODES


ANODE TYPE			DIMENSIO	ONS (mm)			WEIGHT (kg)			
ITTE	В	A	C	D	Н	F	NET	GROSS		
N120ZT	950	570	65	68 56		12	10.8	12.0		
N230ZT	1500	1100	65	68	68 56		21.5	23.0		
N320ZT	1600	1200	60	63	63	14	30.5	32.0		

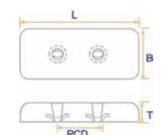
ZINC PITGUARD TANK ANODES

ANODE		DIMENSIONS (mm)								
TYPE	A	A H C D E F G						NET	GROSS	
N100ZPG	500	56	65	68	70	35	14	8.8	10	


ALUMINIUM TANK ANODES

ANODE				WEIGHT (kg)				
TYPE	В	B A C D H F		NET	GROSS			
N50AT	700	500	59	62	60	12	4.0	5.0
N100AT	1200	760	50	76	70	14	8.8	10.0
N140AT	1400	1200	60	64	60	14	12.5	14.0

ALUMINIUM PITGUARD TANK ANODES

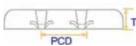


ANODE			WEIGHT (kg)						
TYPE	A	Н	C	D	E	F	G	NET	GROSS
N50APG	400	70	50	76	70	35	12	4	5.0
N70APG	600	64	60	64	70	35	14	5.9	7.0

TANK ANODES ARE AVAILABLE EITHER Z CRANKED (AS SHOWN) OR WITH STRAIGHT INSERT. ALTERNATIVE INSERT ARRANGEMENTS AVAILABLE ON REQUEST.

BOLTED HULL ANODES

BOLTED ZINC HULL ANODES



ANODE		DIMENSIO	ONS (mm)		WEIGH	HT (kg)
TYPE	L	В	T	PCD	NET	GROSS
N60ZBH	300	150	26	160	5.6	5.9
N75ZBH	300	150	32	160	7	7.3
N85ZBH	300	150	36	160	8	8.3
N100ZBH	300	150	46	160	9.7	10
N130ZBH	300	150	56	160	12.7	13
N220ZBH	300	150	82	160	21.7	22

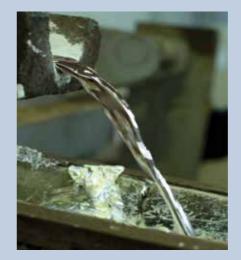
BOLTED ALUMINIUM HULL ANODES

ANODE		DIMENSIO	NS (mm)		WEIGH	HT (kg)
TYPE	L	В	T	PCD	NET	GROSS
N27ABH	300	150	26	160	2.4	2.7
N30ABH	300	150	32	160	2.6	2.9
N35ABH	300	150	150 36		3.2	3.5
N50ABH	300	150	46	160	4.3	4.6
N55ABH	300	150	56	160	5.2	5.5
N85ABH	300	150	82	160	8.2	8.5

ROUND ANODES

ZINC CASTING ROUNDS

L=600 MM



D (MM)	20	25	30	40	50	60	70	80	90	100	110	120	130	150
WEIGHT (KGS)	1.4	2.1	3.0	5,0	8.,2	11.0	16.0	21.0	27.0	32.0	44.3	48.0	57.0	76.0

For updated information please check regularly our website http://www.katradis.com/anodes

PRODUCTION PROCEDURE

SPECIAL ORDERS:

We also provide the option of manufacturing special molds that meet particular standards of the market.

ANCHOR CHAINS & ANCHORS

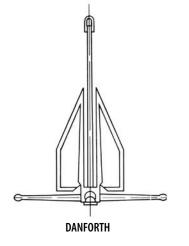
We supply from the smallest to largest sizes of chains and accessories with grades (U1, U2, U3), which are accompanied with the major class certificates. Also we supply anchors, mainly the most commonly used ones, hull type, but we can provide, at notice any type needed. Comprehensive stocks of new and second hand anchors and chains are held in Piraeus, China and this stock allows KATRADIS to provide the quickest delivery service possible worldwide.

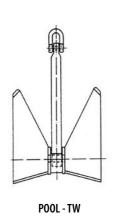
Prompt service within 24 hours

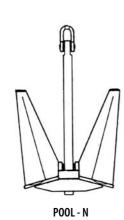
Our large stock of studlink chains and anchors, in Greece and overseas, for prompt delivery when needed, is accompanied with IACS class test Certificates of the Classification Society of your interest which are obtainable by the Society in question upon presence of its surveyor during the test, guaranteeing top quality materials

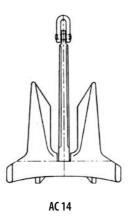
We are able to give our customers a prompt and complete service in the supply of guaranteed certified accessories of studlink chains and anchors for naval marine uses as well as for buoy moorings and offshore platforms.

We serve all types of vessels in greek ports and oveseas

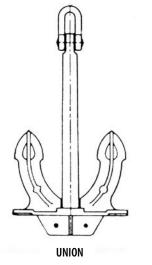

In our testing facilities of 250 tons capacity and 32m free test length, approved for accuracy by the classification Societies, we undertake on your account tests of specimens and materials.

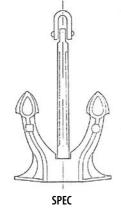

Adequate attachments for tests of anchors up to 15 tons and anchor chains up to the max capacity of 2452 kN (breaking test of links or proof test of full length) are available for our clients.

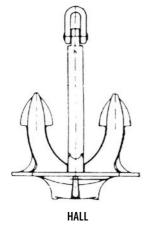




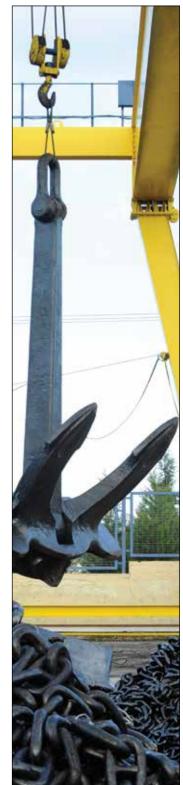
HIGH HOLDING POWER

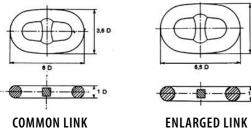


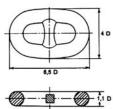


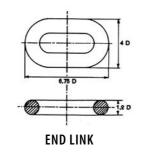


STOCKLESS (NORMAL POWER)

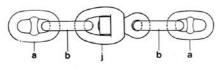


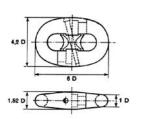


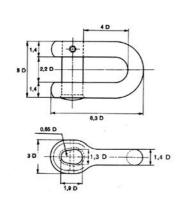

TECHNICAL DATA

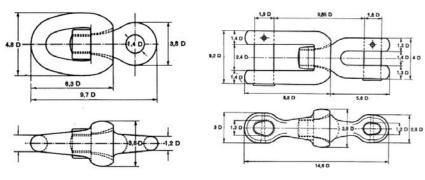

		PROOF	LOAD TES	TS FOR AN	NCHORS		
Weight of Anchor kg	Proof Load kg						
50	2370	900	18600	3600	54800	6900	80700
55	2570	950	19500	3700	55800	7000	81300
60	2760	1000	20300	3800	56800	7200	82600
65	2950	1050	21200	3900	57800	7400	83800
70	3130	1100	22000	4000	58800	7600	85000
75	3300	1150	22800	4100	59800	7800	86100
80	3460	1200	23600	4200	60700	8000	87000
90	3700	1250	24400	4300	61600	8200	88100
100	3990	1300	25200	4400	62500	8400	89200
120	4520	1350	26000	4500	63400	8600	90300
140	5000	1400	26700	4600	64300	8800	91400
160	5430	1450	27500	4700	65100	9000	92400
180	5850	1500	28300	4800	65800	9200	93400
200	6250	1600	29800	4900	66600	9400	94400
225	6810	1700	31300	5000	67400	9600	95300
250	7180	1800	32700	5100	68200	9800	96200
275	7640	1900	34200	5200	69000	10000	97100
300	8110	2000	35600	5300	69800	10500	99300
325	8580	2100	36900	5400	70500	11000	101500
350	9050	2200	38300	5500	71300	11500	103600
375	9520	2300	39600	5600	72000	12000	105700
400	9980	2400	40900	5700	72700	12500	107800
425	10500	2500	42200	5800	73500	13000	109900
450	10900	2600	43500	5900	74200	13500	111900
475	11400	2700	44700	6000	74900	14000	113900
500	11800	2800	45900	6100	75500	14500	115900
550	12700	2900	47100	6200	76200	15000	117700
600	13500	3000	48300	6300	76900	15500	119500
650	14300	3100	49400	6400	77500	16000	120900
700	15200	3200	50500	6500	78200	16500	122200
750	16100	3300	51600	6600	78800	17000	123500
800	16900	3400	52700	6700	79400	17500	124700
850	17800	3500	53800	6800	80100	18000	125900




STUD LINK CHAIN CABLES






FORERUNNERS WITH SWIVEL

ANCHOR SHACKLE "D" TYPE

SWIVEL SHACKLES

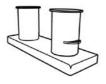
SWIVEL SWIVEL SHACKLE TYPE B

Chain Diametre mm				inimum bre	J		
Diametre			GRA	DES			Minimum
		PROOF LOAD	1		MINIMUM BREAKING LOAD		Minimum Weight
	Grade 1 KN	Grade 2 KN	Grade 3 KN	Grade 1 KN	Grade 2 KN	Grade 3 KN	kg per length of 27,5 m
16	76	107	150	107	150	216	160
17,5	89	127	179	127	179	256	190
19	105	150	211	150	211	301	225
20,5	123	175	244	175	244	349	265
22	140	200	280	200	280	401	300
24	167	237	332	237	332	476	360
26	194	278	389	278	389	556	420
28	225	321	449	321	449	642	490
30 32	257	368	514	368	514	735	565
34	291 328	417 468	583 655	417 468	583 655	833 937	635 720
36	366	523	732	523	732	1050	800
38	406	581	812	581	812	1160	895
40	448	640	896	640	896	1280	995
42	492	703	981	703	981	1400	1100
44	538	769	1080	769	1080	1540	1200
46	585	837	1170	837	1170	1680	1320
48	635	908	1280	908	1280	1810	1440
50	686	981	1370	981	1370	1960	1560
52	739	1060	1480	1060	1480	2110	1675
54	794	1140	1590	1140	1590	2270	1820
56	851	1220	1710	1220	1710	2430	1935
58	909	1290	1810	1290	1810	2600	2075
60	969	1380 1470	1940 2060	1380 1470	1940 2060	2770 2940	2220
64	1100	1560	2190	1560	2190	3130	2550
66	1160	1660	2310	1660	2310	3300	2695
68	1230	1750	2450	1750	2450	3500	2890
70	1290	1840	2580	1840	2580	3690	3030
73	1390	1990	2790	1990	2790	3990	3290
76	1500	2150	3010	2150	3010	4300	3550
78	1580	2260	3160	2260	3160	4500	3755
81	1690	2410	3380	2410	3380	4820	4035
84	1810	2580	3610	2580	3610	5160	4395
87	1920	2750	3850	2750	3850	5500	4760
90	2050	2920	4090	2920	4090	5840	5005
92 95	2130 2260	3040 3230	4260 4510	3040 3230	4260 4510	6080 6440	5200 5570
97	2340	3350	4680	3350	4680	6690	5760
100	2470	3530	4940	3530	4940	7060	6130
102	2560	3660	5120	3660	5120	7320	6505
105	2700	3860	5390	3860	5390	7700	6885
107	2790	3980	5570	3980	5570	7960	7140
111	2970	4250	5940	4250	5940	8480	7715
114	3110	4440	6230	4440	6230	8890	8085
117	3260	4650	6510	4650	6510	9300	8445
120	3400	4860	6810	4860	6810	9720	9110
122	3500	5000	7000	5000	7000	9990	9240
124	3600	5140	7200	5140	7200	10280	9700
127	3750	5350	7490	5350	7490	10710	10040
130	3900	5570	7800	5570	7800	11140	10420
132 137	4000 4260	5720 6080	8000 8510	5720 6080	8000 8510	11420 12160	10910 11720
142	4520	6450	9030	6450	9030	12160	12515
147	4790	6840	9560	6840	9560	13660	13295
152	5050	7220	10100	7220	10100	14430	14695
157	5320	7600	10640	7600	10640	15200	15475
162	5590	7990	11170	7990	11170	15970	16210

For updated information please check regularly our website http://www.katradis.com/anchors-chains

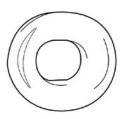
VESSEL DECK EQUIPMENT

KATRADIS company supplies for many years a wide range of deck equipment. We keep stock in our premises in Piraeus of various equipment for urgent needs and we can also supply worldwide through our partners / makers in Europe & Asia.

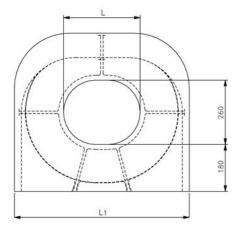

KATRADIS VEP can provide deck equipment such as Bollards, rollers, chocks, chain stoppers, smit brackets etc. which are manufactured according to OCIMF, ISO, JIS, DIN or any other Standards or customer's specifications. The current catalogue includes the equipment which we mainly supply accompanying them with BV certificate. Of course we can provide any third party class certificate (BV, LR, ABS, etc.) according to the client's requisition.

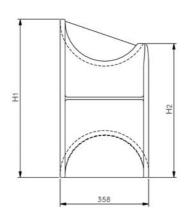
Panama Chocks - Deck Mounting and BLW

Twin, Singe and Cross Bitt Bollards, Tug Escort Bollards, Cruciform Bollards


Rollers - Fairlead

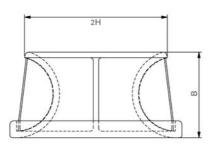
Chain Stoppers and Bulwark Chocks (Emergency Towing System)



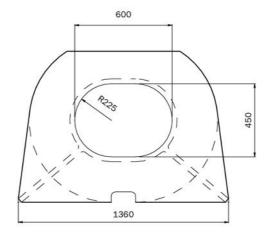


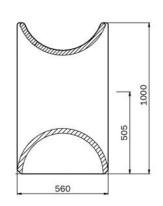
Smit Brackets

JIS F - 2017 Panama Chocks Type AC

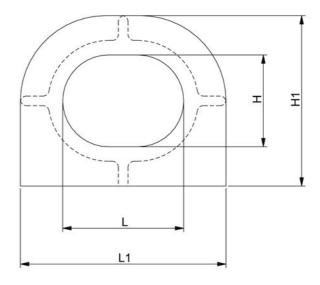


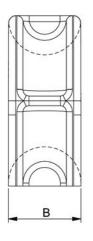
NOM.	D	IMENSIC	NS (m.m	1.)	MASS
SIZE	L	L1	H1	H2	(Kg)
310	310	708	639	541	253
360	360	760	640	542	289
400	400	804	642	545	323
450	450	856	643	547	351
500	500	908	644	549	395


JIS F - 2017 Panama Chocks Type BC

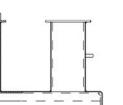


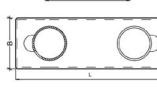
NOM.		D	IMENSIC	NS (m.n	n.)	MASS
SIZE	L	L2	L3	H1	H2	(Kg)
310	310	734	652	684	462	276
360	360	788	701	688	464	305
400	400	832	750	692	470	344
450	450	886	802	696	474	385
500	500	940	854	700	478	422


Panama Bow chock - EU Type - Deck Mounting



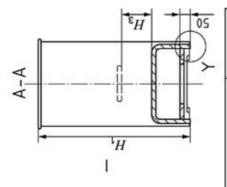
NOM.		D	IMENSIC	NS (m.n	n.)	MASS
SIZE	Α	В	С	D	Е	(kgr.)
600x450	600	450	1360	1000	560	740

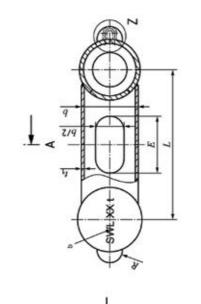

JIS F - 2005 Closed Chocks Deck Mounting

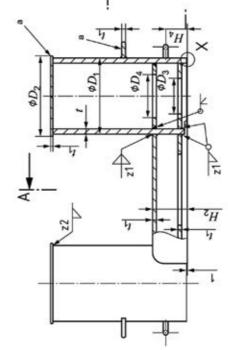


NOM.			IMENSIC	NS (m.n		MASS	Dia. of Wire
SIZE	L	L1	В	Н	H1	(kgr.)	Rope (mm)
100	100	170	60	76	141	4	14
150	150	250	90	110	205	11	16
200	200	340	120	150	280	24	18
250	250	434	160	200	372	48	20
300	300	528	200	250	464	82	22
350	350	600	220	250	485	103	24
400	400	672	240	250	506	136	26
450	450	746	260	250	528	184	30
500	500	820	280	250	550	232	36

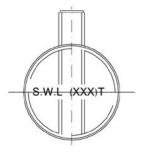
JIS F - 2001 Double Bitt Bollard

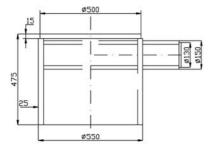





NOM.	[DIMENSI	ONS (m.	m.)			MBL ROPE	MASS
SIZE	D	H1	Α	В	L	H2	(ton)	(kgr.)
100	114	150	250	165	445	50	3	19
125	139	190	315	195	540	60	4	29
160	165	250	400	225	670	70	5	45
200	216	300	500	290	860	85	8	80
250	267	380	630	360	1065	100	12	139
315	318	480	800	430	1300	125	20	261
355	355	530	890	480	1475	145	26	361
400	406	600	1000	550	1630	160	32	502
450	457	680	1130	620	1840	170	39	685
500	508	750	1250	690	2040	190	46	911
560	558	830	1380	750	2240	210	56	1208
630	609	940	1570	820	2510	225	70	1600
710	711	1050	1750	960	2840	260	82	2252
800	812	1200	2000	1100	3240	295	100	3071

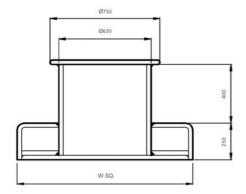
Twin bollard ISO-13795, Type B

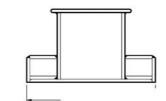




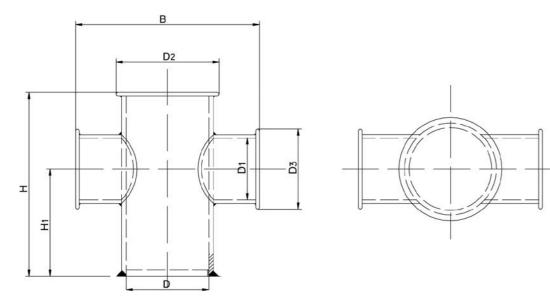
Namical Nami						_		_	_	_	_	_	_	_	_	-	Valding las				SV	SWL			
Phi	minal	1000														_	length ³		For (Fig	mooring ure-of-ei	purposes ght belay)		For towing purposes	wing	Calculated weight ^c
166,2 185 80 330 90 70 60 155 400 8,0 6 6 6 9 3,5 3,5 3,5 54 5,5 5,2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ezi	D1	D2	DS	D4	Hı	H2	H3	HA	9	7	2		99		_		~	One-rope	use	Two-rope use	e nse	(Eye splice)	plice)	(64)
166,2 186 80 30 30 90 70 60 155 400 8,0 6 6 40 3,5 3,5 3,5 5 54 5,5 8,7 9,7 9,7 9,7 9,7 9,7 9,7 9,7 9,7 9,7 9	n'a	8	33	ii.	3/6	S2	0		30.					89	95		_		KN)	(1)	(kN)	(1)	(KN)	(1)	1,585
2163, 240 - 130 395 115 70 60 205 500 - 8,0 6 50 3,5 3,5 3,5 3,5 8,4 160 267,4 200 - 120,0 9 9 6 5,5 4 156 160 100 100 100 100 6 5,5 4 156 160 100 <th< td=""><td>8</td><td>165,2</td><td>185</td><td></td><td>80</td><td>330</td><td>06</td><td>02</td><td></td><td></td><td>100</td><td></td><td>8,0</td><td>Н</td><td></td><td>H</td><td>3</td><td>9</td><td>54</td><td>5,5</td><td>49</td><td>2'0</td><td>383</td><td>10</td><td>53</td></th<>	8	165,2	185		80	330	06	02			100		8,0	Н		H	3	9	54	5,5	49	2'0	383	10	53
267,4 290 - 160 505 135 90 75 260 630 - 120 9 8 60 5,5 4 156 16 16 267,4 290 - 160 505 135 90 75 250 630 - 10,0 8 7 60 5,5 4 127 13 318,5 340 150 185 10 75 250 600 21,5 16 9 70 10,5 4 127 13 318,5 340 150 185 100 150 110 85 290 800 21,5 16 9 7 40 5,5 4 127 13 105 340 80 300 12,0 10,0 8 7 60 5,5 4 127 13 11 8 8 7 10,5 4 124 15 14 10<	8	216,3			130		115	02			200		-					2	82	8,4	65	6,7	629	13	46
267,4 290 160 505 135 90 75 250 630 10,0 8 7 60 5,5 4 127 139 1318,5 340 150 185 600 150 110 85 290 800 300 21,5 16 9 70 10,5 4 322 34 199 355,6 380 170 200 685 175 130 105 340 890 350 26,0 19 11 80 12,5 5 5 443 45 130 145 145 145 140 140 380 350 28,0	SOA	267,4	-		160		135	06			330								991	16	134	14	1315	27	107
318.5 340 150 185 600 150 110 85 290 800 300 12,0 9 9 70 10,5 4 332 34 34 34 34 34 34 34 34 34 34 34 34 34	808	267,4	-		160		135	90			330			Н					127	13	108	11	215	22	16
355.6 380 170 200 685 175 130 105 340 890 350 12,0 9 9 70 10,5 4 188 198 19 19 355.6 380 170 200 685 175 130 105 340 890 350 26,0 19 11 80 12,5 5 443 453 45 45 430 190 230 730 185 145 115 380 1 000 380 15,0 11 11 86 8 8 7 7 4 4 244 25 39 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NO.	318,5		150	185		-	110											332	34	306	31	3 365	62	281
355.6 380 170 200 685 175 130 105 340 890 350 26,0 19 11 80 125 5 443 443 45 45 40 10 20 685 175 130 105 340 890 350 14,0 10 9 80 77 4 244 25 244 25 25 25 25 25 25 25 25 25 25 25 25 25	800	318,5		150	185			110					-						186	19	161	16	352	36	166
355.6 380 170 220 685 175 130 105 340 80 350 400 7 4 244 25 406.4 430 190 230 730 185 145 115 380 100 280 125 6 594 61 406.4 430 190 250 730 185 145 116 380 150 17 46 50 8 5 8 5 326 60 60 60 60 7 46 61 60 60 7 46 61 60 60 60 60 7 47 7 <td>SOA</td> <td>355,6</td> <td>-</td> <td>170</td> <td>200</td> <td>-</td> <td>175</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>143</td> <td>45</td> <td>418</td> <td>43</td> <td>5 062</td> <td>88</td> <td>431</td>	SOA	355,6	-	170	200	-	175						-						143	45	418	43	5 062	88	431
466,4 430 190 230 730 185 145 115 380 1 000 380 28,0 20 13 85 12,5 6 594 61 466,4 430 190 250 730 185 145 115 380 1 000 380 15,0 11 11 85 8 7 2 326 33 77 45,2 480 210 285 770 195 180 120 425 1 100 410 29,0 21 14 90 12 7 7 753 77 75	80B	355,6	-	170	220			-											244	25	216	22	2 855	20	241
457.2 480 210 265 770 195 160 120 425 1100 410 29,0 21 14 90 12 7 753 77 89 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NO.	406,4	-	190	230			-	\vdash	1 088	-		-		-				594	61	521	53	6 632	106	570
457,2 480 210 265 770 195 160 120 425 1100 410 29,0 21 14 90 12 7 753 77 753 77 750 450 12 608,0 530 235 295 830 230 230 150 150 480 1250 460 32,0 23 16 100 12,5 8 992 101 15 558,8 580 235 230 800 270 200 180 520 130 540 31,0 22 16 110 11,5 8 113 115 115 110 110 11,5 80 11,5 80 1131 115 115 110 110 11,5 80 11	80	406,4	430	190	250	-				380 1	\vdash			-					326	33	269	27	3816	29	322
457,2 480 210 285 770 195 160 120 445, 2 11 11 90 8 7 382 39 508.0 530 235 235 236 230 200 150 480 1250 460 32.0 23 16 100 12.5 8 992 101 568.8 530 236 230 200 150 126 480 1250 440 14,5 11 11 100 8 5 457 47 558.8 580 255 330 200 180 520 1360 540 11,5 11 11 100 8 5 457 47 558.8 580 255 350 200 180 520 1360 540 1550 600 33,0 20 200 200 200 560 1550 600 33,0 20 200 20 <t< td=""><td>NO.</td><td>457,2</td><td></td><td>210</td><td>265</td><td></td><td>195</td><td>160</td><td></td><td>125 1</td><td></td><td></td><td>-</td><td>30</td><td>377</td><td></td><td>200</td><td></td><td>753</td><td>77</td><td>612</td><td>62</td><td>8 201</td><td>124</td><td>712</td></t<>	NO.	457,2		210	265		195	160		125 1			-	30	377		200		753	77	612	62	8 201	124	712
508.0 530 235 235 830 230 150 150 146 32.0 23.0 150	808	457,2	-	210	285			160	-	-	-		-						382	39	292	30	4 483	78	379
508.0 530 235 320 830 230 230 150 150 145 11 11 100 8 5 457 47 558.8 580 255 330 900 270 200 180 520 130 520 130 11,5 8 11,13 11,5 8 1131 115 609.4 609.4 630 250 300 200 200 200 560 1550 600 33,0 23 16 11 10 11,5 8 1401 143 3WL is the remainmental period contribute same welding volumeristrength. 1550 600 33,0 23 16 120 11,5 8 1401 143	A	508,0	-	235	295			-		-			-						392	101	757	11	10 928	154	096
558.8 580 255 330 900 270 200 180 520 1380 540 31,0 22 16 110 11,5 8 1131 115 115 58.8 580 255 350 900 270 200 180 520 1380 540 21,0 16 11 110 11,5 5 781 80 143 143 143 143 144	800	508,0	-	235	320		-			-			-				- 7		157	47	326	33	5474	93	465
558.8 580 255 350 900 270 200 180 550 1 150 115 5 761 80 609.4 630 280 365 360 200 200 560 1 550 600 33.0 23 16 11.5 8 14.01 143 SIM: is the maximum applicable rope tension. 38M: is the maximum applicable rope tension. 35.0 200 1 550 600 33.0 23 16 120 11.5 8 1 401 143	OA	558,8	-	255	330	-				520 1						-	2		131	115	812	83	12 635	165	1 123
609,4 630 280 365 950 300 200 250 560 1550 600 33,0 23 16 120 11,5 8 1401 143 143 143 144 14	90	558,8	_	255	350	-				-			-			700	2		181	80	541	55	9 280	159	787
Sec. 2	8	609,4	630	_		950	-	_	_	-	550		-				2	-	401	143	948	97	15 539	193	1 391
of These are besed on the loads	Weldir	g with char	mfering is	availab	e based	on the sa	ame well	ding volt	ume/stree	July.	S	Č.	8	0	1	,	S	185.00	Š	917	- C	3	5	00	
	The S	M. is the m	aximum	applicab	e rope t	ension.																			
	The S	VLs shown	in this ta	ble are	or refere	nce only.	These	are base	ed on the		as ment	in benoi	Annex A.												
The calculated weight is for reference only.	The ca	iculated we	eight is fo	r referen	ce only.																				*

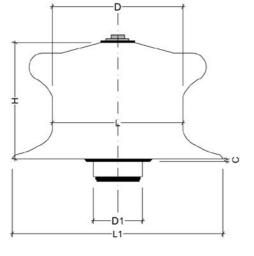
23


Strong Point with one stud



Туре	W (mm)
100T	1000
200T	1200

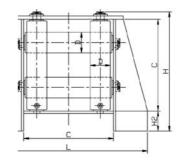

Tug Escort Bollard

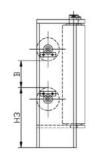

Туре	W (mm)
100T	1200
200T	1200

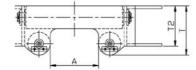
JIS F - 2804 Cross Bitt Bollard

NOM.			DIME	ENSIONS	(m.m.)			MASS	WIRE
SIZE	Н	H1	В	D	D1	D2	D3	(Kgr)	ROPE DIA
150	480	280	460	165	114	206	158	33	16
200	560	320	520	216	165	256	206	60	22
250	640	360	610	267	216	308	256	102	28
300	680	380	660	318	267	360	308	154	34
350	720	420	720	355	267	400	312	186	38

JIS F - 2014 Fairlead Roller

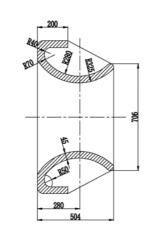

NOM.		DIMENSI	ONS (m.r	m.)	MASS
SIZE	L	L1	Н	С	(kgr.)
150	150	240	195	3	32.1
200	200	310	235	3	64.6
250	250	380	282	4	108
300	300	440	305	4	159
350	350	500	330	4	235
400	400	560	355	5	336

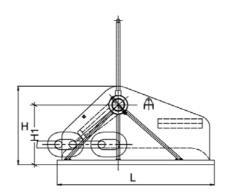

Fairlead Roller EU Type

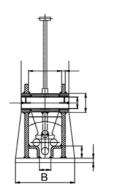


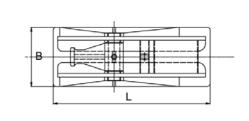
NOM.		MASS			
SIZE	D1	D2	Н	S	(kgr.)
150	240	90	154	5	25
200	310	115	186	5	50
250	380	135	230	6	92
300	440	155	255	7	127
350	500	175	271	7	168
400	560	195	307	7	252
450	630	210	316	7	310

Roller fairlead (Standard - DIN 81902)

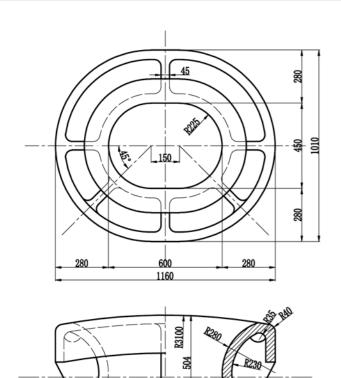


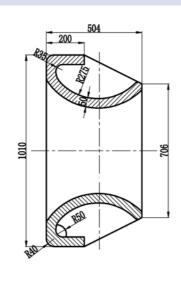

Product Type	Nom Pull (KN)	L (mm)	T (mm)	H (mm)	A (mm)	B (mm)	C (mm)	D (mm)	T2 (mm)	H2 (mm)	H3 (mm)	Weight (Kg)
FA-01	10	460	130	348	120	80	260	60	120	70	160	30
FA-02	20	640	174	464	180	100	364	82	160	80	212	68
FA-03	30	800	219	579	220	120	454	102	180	100	267	140
FA-05	50	900	264	676	250	140	524	127	240	120	312	251
FA-08	80	1000	290	757	280	150	580	140	260	140	355	382
FA-12	120	1200	368	876	300	160	680	178	320	150	410	657
FA-16	160	1300	400	948	320	169	732	194	350	170	452	827
FA-20	200	1350	500	1082	340	180	856	244	450	180	518	1193
FA-32	320	1700	608	1355	400	250	1026	298	550	220	608	2200

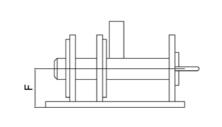

Bulwork Chocks SWL-250T

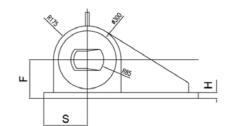


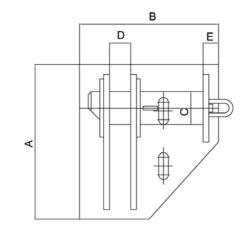
Chain Stoppers






SWL	[MASS			
SVVL	L	В	Н	H1	(Kgr)
250T	1,800	640	850	648	1,528
350T	1,700	640	850	648	1,728


Bulwork Chocks SWL-350T



Smit Bracket OCIMF Type

Nominal	Dimensions (mm)									
Cable Dia									(kgr)	
(mm)	A	В	С	D	E	F	Н	S		
54	625	600	125	80	100	175	30	123	184	
76	800	720	170	110	110	200	30	175	278	

Quality Assurance & International Certificates

CERTIFICATE OF APPROVAL

This is to certify that the Quality Management System of:

KATRADIS MARINE ROPES INDUSTRY S.A. 11, Psaron 186 48, Drapetsona Greece

has been approved by Lloyd's Register Quality Assurance to the following Quality Management System Standard:

BS EN ISO 9001:2008

The Quality Management System is applicable to:

Design, Production and Sales of Synthetic Ropes and Anodes. Trading of Marine Paints, Anchors, Anchor Chains and their Accessories, Safety Ladders, Fenders and Bollards for Ports.

This certificate is valid only in association with the certificate schedule bearing the same number on which the locations applicable to this approval are listed.

Approval

Certificate No: PIR0362324

Original Approval: 26 July 2006

Current Certificate: 06 August 2015

Certificate Expiry: 05 August 2018

Issued by: Hellenic Lloyd's S.A. for and on behalf of

Lloyd's Register Quality Assurance

Approval Certificate No: PIR0362324 For and on behalf of 1 Trinity Park, Bickenhill Lane, Birmingham, 837 7ES, United Kingdom
This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA.
The use of the UKAS Accreditation Mark indicates Accreditation in respect of those activities covered by the Accreditation Certificate Number 001
Macro revision 14

CERTIFICATE OF APPROVAL

This is to certify that the Quality Management System of:

KATRADIS VEP S.A. 11, Psaron Street 186 48, Drapetsona Greece

has been approved by Lloyd's Register Quality Assurance to the following Quality Management System Standard:

BS EN ISO 9001:2008

The Quality Management System is applicable to:

Fabrication of wire ropes and wire rope slings. Sales of wire ropes, wire rope slings, chains, relevant marine accessories, fixed deck equipment, moving and marking buoys, light towers, antipollution materials, safety ladders, fenders and bollards for ports.

Approval

Certificate No: PIR0362325

Original Approval: 07August 2006

Current Certificate: 22 August 2015

Certificate Expiry: 21 August 2018

Issued by: Hellenic Lloyd's S. A. for and on behalf of Lloyd's Register Quality Assurance Limited

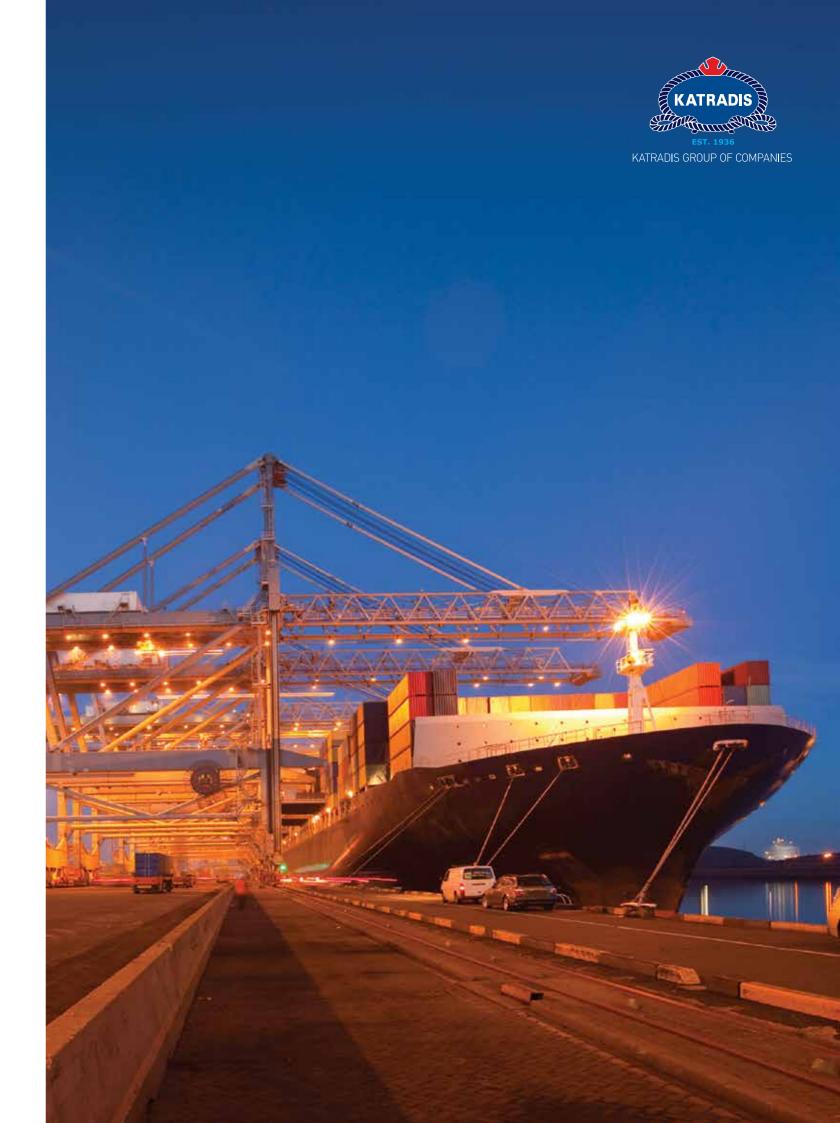
87. Akti Miaouli, 185 38. Piraeus, Greece For and on behalf of 1 Trinity Park, Bickenhill Lane, Birmingham, B37 7ES, United Kingdom
This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA.
The use of the UKAS Accreditation Mark indicates Accreditation in respect of those activities covered by the Accreditation Certificate Number 001

Pioneers in quality perfection

Established in 1936 in Piraeus, Greece, the Katradis Group of Companies is one of the most prominent organizations in the shipping industry.

Over the years, the Katradis Group has developed expertise in the design, development and manufacture of high quality synthetic mooring ropes. Our wide range of products includes ropes made with UHMWPE, Aramid, LCP (Liquid Crystal Polymer), Polypropylene, Nylon, Polyester and Mixed / Dual Fiber ropes, in single and double braided constructions.

The Katradis Group of Companies also supplies steel wire ropes, zinc and aluminum anodes, anchors and stud link anchor chain cables, container fittings, alloy steel chain slings, wire and synthetic rope lifting slings and lashing webbings, port development equipment, rubber dock fenders, buoys, floating marinas, bollards, oil booms, vessel deck equipment, protective coatings (SHARK Marine Paints) and testing services in our LR Approved Testing Establishment.



We serve worldwide!

With the support of an extensive global network of affiliated establishments, agents, suppliers and representatives, we provide our customers with immediate service around the world.

Katradis Global Network

Africa: Egypt (Alexandria, Port Said, Suez) • South Africa (Durban, Cape Town) • Asia: Singapore (Singapore) | Korea (Pusan) | China (Hong Kong, Shanghai, Qingdao, Zhenjiang & other ports) • Europe: Belgium (Antwerp, Zeebrugee) | Germany (Hamburg) | Netherlands (Rotterdam, Amsterdam) | Spain (Algeciras, Cadiz, Las Palmas) | Turkey (Istanbul) | Bulgaria (Varna) | Greece (all ports) | Cyprus (all ports) • Middle East: U.A.E. (Fujairah, Dubai) • North America: Canada (Montreal) | USA (Houston, New Orleans, New York) • Central America: Panama (Panama) • South America: Brazil (Santos, Rio de Janeiro, Vitoria, Paranagua, Sepetiba, Itagua) • Australia (Brisbane, Sydney, Melbourne, Adelaide, Fremantle and Darwin)

